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1. INTRODUCTION

Let a be a nondecreasing function on I :=[−1, 1] with infinitely many
points of increase such that all moments of da are finite. We call da a
measure. Let

||f|| :=max
x ¥ I
|f(x)|, f ¥ C[−1, 1],

and

||f||da, m :=3F
I
|f|m da4

1/m

, 0 < m <., f ¥ Lmda[−1, 1].(1.1)

Then we define the Lm monic extremal polynomials

Pg
n (da, m, x)=x

n+·· · , n=0, 1, ...,(1.2)

satisfying

||Pg
n (da, m)||da, m= inf

P(x)=xn+· · ·
||P||da, m(1.3)



and the Lm normalized extremal polynomials

Pn(da, m, x)=P
g
n (da, m, x)/||P

g
n (da, m)||da, m

=cn(da, m) xn+·· · , n=0, 1, ... .(1.4)

Given a triangular matrix X of nodes

1 \ x1n > x2n > · · · > xnn \ −1, n=1, 2, ...,(1.5)

denote the Lagrange interpolating polynomial of f ¥ C[−1, 1] by

Ln(X, f, x) :=C
n

k=1
f(xkn) akn(X, x), n=1, 2, ...,(1.6)

and the Lebesgue function type sum by

Sn(X, x) :=C
n

k=1
|(x−xkn) akn(X, x)|, n=1, 2, ...,(1.7)

respectively, where the fundamental polynomials

akn(X, x)=
wn(x)

w −n(xkn)(x−xkn)
, k=1, 2, ..., n, n=1, 2, ...,

with wn(x)=(x−x1n)(x−x2n) · · · (x−xnn), n=1, 2, ... .
If X consists of the zeros of Pn(da, m) then we write Ln(da, m, f) instead

of Ln(X, f), etc.
As we know, the case m=2 is the special case of orthogonal polyno-

mials; it has a long history of study and a classical theory. In contrast to
this special case the theory for the general case is still in the developing
stages.

In attempting to study convergence of orthogonal Fourier series or con-
vergence of Lagrange interpolation at zeros of orthogonal polynomials,
one invariably encounters the need for bounds and inequalities on the
orthogonal polynomials on the interval of orthogonality. Historically, the
problem of finding bounds and inequalities has lived under the shadow of
the deeper asymptotics on the segment, for the latter are often the only way
of obtaining the former. Of course, this way usually gives asymptotic esti-
mates for certain ‘‘nice’’ weights only. Recently the author in [4, 5] has
developed an effective approach—so called the non-asymptotic appoach to
find bounds and inequalities of many important quantities in orthogonal
polynomials for arbitrary measures. Using this appoach the author [6] also
gets some elementary results for Lm extremal polynomials. On the other
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hand, in [7] the author introduces the Christoffel type functions for Lm
extremal polynomials for m ¥ N2, where N2 stands for the set of even
natural numbers. It turns out that this is a useful tool and will have many
applications. The main aim of this paper is to use both the non-asymptotic
appoach and the Christoffel type functions for Lm extremal polynomials to
establish more bounds and inequalities for Lm extremal polynomials in
details and to give their applications.

2. PRELIMINARIES

We introduce the following definitions and notations:

Pn :=the set of all polynomials of degree at most n;

Z(aŒ) :={x ¥ I : aŒ(x)=0};

M :=the collection of all Lebesgue measurable sets in I;

|W| :=the measure of W, W ¥M;

s(da, D, d) :=

inf
W ¥M
W … D
|W|=d

F
W

da(x)

F
D

da(x)
, D ¥M, 0 < d [ |D|,

s(da, d) :=s(da, I, d).

We need some auxiliary lemmas.

Lemma A [5, Lemma 1]. Let da be an arbitrary measure supported in
[−1, 1] and D ¥M. If >D da(x) > 0, then there exists a number d :=
d(da, D), 0 < d [ |D| (in case |D 5 Z(aŒ)| < |D| every d satisfying |D 5 Z(aŒ)|
< d [ |D| is suitable), such that s(da, D, d) > 0.

Lemma B [4, Theorem 1]. For any matrix X and for any sequence of
positive numbers {en} there exist sets In … I such that |In | [ en and

C
n

k=1
Sn(X, x) \

en

24
(2.1)

holds for all x ¥ I0In and n=1, 2, ... .

In what follows we denote by xkn=xkn(da, m), k=1, 2, ..., n, the zeros
of the Lm extremal polynomial Pn(da, m) and for convenience we accept the
notations Pn(da) :=Pn(da, 2), cn(da) :=cn(da, 2), etc. The letters c, c1, ...
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stand for positive constants independent of variables and indices, unless
otherwise indicated; their value may be different at different occurrences,
even in subsequent formulas.

Definition 2.1 [7]. For m ¥ N2 the Christoffel type function of Lm
extremal polynomials lm−2, n, m(da, x) is defined by

lm−2, n, m(da, x)= min
P ¥ Pn−1, P(x)=1

1
(m−2)!

F
1

−1
P(t)m (t−x)m−2 da(t).(2.2)

Remark. In fact, in [7] the Christoffel type functions for Lm extremal
polynomials lj, n, m(da, x) with m ¥ N2 are defined for j=0, 2, 4, ...,
m−2. But here we only need the special case when j=m−2 and use an
alternative definition (see [7, Theorem 1]).

Definition 2.2 [3, p. 106]. For 0 < m <. the generalized Christoffel
function ln(da, m, x) is defined by

ln(da, m, x)= min
P ¥ Pn−1, P(x)=1

F
1

−1
|P(t)|m da(t).(2.3)

Clearly, both the cases when m=2 become the classical Christoffel
function

ln(da, x)=l0, n, 2(da, x)=ln(da, 2, x).

In this case we have

ln(da, x)=5 C
n

k=1

akn(da, x)2

lkn(da)
6−1,(2.4)

where

lkn(da)=ln(da, xkn), k=1, 2, ..., n.

3. BOUNDS AND INEQUALITIES

We use the ideas of Lubinsky and Saff in the proof of [2, Lemma 3.1]
which gives the relationship between Lm extremal polynomials and classical
orthogonal polynomials (m=2). Let for 2 [ m <.

dan(x) :=|Pn(da, m, x)|m−2 da(x).
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Then we have [6]

Pn(dan, x)=Pn(da, m, x), cn(dan)=cn(da, m),

xkn(dan)=xkn(da, m), k=1, 2, ..., n.
(3.1)

We need a basic expression of orthogonal polynomials with respect to the
measure dan [3, p. 6]

cn−1(dan)
cn(dan)

lkn(dan) Pn−1(dan, xkn) Pn(dan, x)(3.2)

=(x−xkn) akn(dan, x), k=1, 2, ..., n,

where lkn(dan)=ln(dan, xkn). Hence

cn−1(dan)
cn(dan)

C
n

k=1
lkn(dan) |Pn−1(dan, xkn)| |Pn(dan, x)|=Sn(dan, x).(3.3)

The first task is further to investigate the relationship between the Lm
extremal polynomials with respect to da and the classical orthogonal
polynomials with respect to dan.

Lemma 3.1. Let da be a measure supported in [−1, 1] and 2 [ m <..
Then

cn−1(da, m) [ cn−1(dan) [ cn(dan)=cn(da, m).(3.4)

Proof. To prove the first inequality of (3.4) we use the definition of
orthogonal polynomials to obtain

S=F
1

−1
Pn−1(da, m, x)2 dan(x)

=cn−1(da, m)2 F
1

−1

5Pn−1(da, m, x)
cn−1(da, m)

62 dan(x)

\ cn−1(da, m)2 F
1

−1

5Pn−1(dan, x)
cn−1(dan)
62 dan(x)

=
cn−1(da, m)2

cn−1(dan)2
.
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On the other hand, by Hölder inequality and by the definition of Lm
extremal polynomials we have

S=F
1

−1
Pn−1(da, m, x)2 |Pn(da, m, x)|m−2 da(x)

[ 5F 1
−1
|Pn−1(da, m, x)|m da(x)6

2/m 5F 1
−1
|Pn(da, m, x)|m da(x)6

(m−2)/m

=1.

Hence (3.4) follows. The second inequality immediately follows from a well
known fact cn−1(dan)/cn(dan) [ 1. The equality of (3.4) follows from
(3.1). L

Lemma 3.2. Let da be a measure supported in [−1, 1] and m ¥ N2. Then
for 1 [ k [ n

lkn(dan)=(m−2)! lk, m−2, n, m(da) P
−

n(da, m, xkn)
m−2(3.5)

and

Pn−1(dan, xkn)=
cn(dan)

(m−2)! cn−1(dan) lk, m−2, n, m(da) P
−

n(da, m, xkn)
m−1 ,(3.6)

where lk, m−2, n, m(da)=lm−2, n, m(da, xkn).

Proof. By definition

lkn(dan)=ln(dan, xkn)=F
1

−1
akn(dan, x)2 dan(x)(3.7)

=F
1

−1
akn(dan, x)2 Pn(da, m, x)m−2 da(x).

On the other hand, by Theorems 1 and 2 in [7]

lk, m−2, n, m(da)=lm−2, n, m(da, xkn)

=
1

(m−2)!
F
1

−1
akn(da, m, x)m (x−xkn)m−2 da(x)

=
1

(m−2)! P −n(da, m, xkn)
m−2 F

1

−1
akn(da, m, x)2

×Pn(da, m, x)m−2 da(x),

which, together with (3.7), yields (3.5).
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Comparing the leading coefficients in both the sides of (3.2) we get (see
[4, (20)])

cn−1(dan)
cn(dan)

lkn(dan) Pn−1(dan, xkn)=
1

P −n(da, m, xkn)
,(3.8)

which, coupled with (3.5), yields (3.6). L

Lemma 3.3. Let da be a measure supported in [−1, 1] and m ¥ N2. Then

ln(dan, x)=(m−2)! 5 C
n

k=1

akn(da, m, x)2

lk, m−2, n, m(da) P
−

n(da, m, xkn)
m−2
6−1(3.9)

and

Pn−1(dan, x)=
cn(dan)

(m−2)! cn−1(dan)
C
n

k=1

Pn(da, m, x)
lk, m−2, n, m(da) P

−

n(da, m, xkn)
m (x−xkn)

.

(3.10)

Proof. The formula (3.9) follows from (2.4) and (3.5). The formula (3.10)
follows from (3.6) and the identity

Pn−1(dan, x)=C
n

k=1
Pn−1(dan, xkn) akn(dan, x). L

Lemma 3.4. Let da be a measure supported in [−1, 1]. Then

ln(dan, x) [ ln(da, m, x)2/m, 2 [m<.,(3.11)

and

ln(dan, x) \ Pn(da, m, x)m−2 lmn/2(da, x), m ¥ N2.(3.12)

Proof. By Definition 2.2 and Hölder inequality

ln(dan, x)= min
P ¥ Pn−1, P(x)=1

F
1

−1
|P(t)|2 dan(t)

= min
P ¥ Pn−1, P(x)=1

F
1

−1
|P(t)|2 |Pn(da, m, x)|m−2 da(t)

[ min
P ¥ Pn−1, P(x)=1

5F1
−1
|P(t)|m a(t)6

2/m

×5F1
−1
|Pn(da, m, x)|m da(t)6

(m−2)/m
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=5 min
P ¥ Pn−1, P(x)=1

F
1

−1
|P(t)|m a(t)6

2/m

=ln(da, m, x)2/m.

This proves (3.11).
To prove (3.12) let P ¥ Pn−1 with P(x)=1 satisfy

ln(dan, x)=F
1

−1
|P(s)|2 |Pn(da, m, s)|m−2 da(s).

By the definition of lmn/2(da, x) we have

P(t)2 Pn(da, m, t)m−2 [ lmn/2(da, t)−1 F
1

−1
|P(s)|2 |Pn(da, m, s)|m−2 da(s)

=lmn/2(da, t)−1 ln(dan, x),

because PPn(da, m)(m−2)/2 ¥ P(mn/2)−1. Inserting t=x yields (3.12). L

Now let us establish bounds and inequalities for Lm extremal polynomials.

Theorem 3.1. Let da be a measure supported in [−1, 1] and 2 [m<..
Then there exists a number d :=d(da), 0 < d < 2 (in case |Z(aŒ)| < 2 every d
satisfying |Z(aŒ)| < d < 2 is suitable), such that

cn−1(dan)
cn(dan)

C
n

k=1
lkn(dan) |Pn−1(dan, xkn)|(3.13)

\
2−d
24
s(da, d) 5F1

−1
da(x)6

1/m

> 0, n=1, 2, ... .

Proof. By Hölder inequality it follows from (3.3) that

F
1

−1
Sn(da, m, x) da(x)

=
cn−1(dan)
cn(dan)

C
n

k=1
lkn(dan) |Pn−1(dan, xkn)| F

1

−1
|Pn(da, m, x)| da(x)

[
cn−1(dan)
cn(dan)

C
n

k=1
lkn(dan) |Pn−1(dan, xkn)| 5F

1

−1
da(x)6

(m−1)/m

.
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Meanwhile, let d, 0 < d < 2, be given in Lemma A so that s(da, d) > 0. Then
applying Lemma B with en=2−d we get In … I such that |In | [ 2−d and

F
1

−1
Sn(da, m, x) da(x) \

2−d
24

F
I0In
da(x).

Since |I0In | \ d, by the definition of s(da, d) we have

F
I0In
da(x) \ s(da, d) F

1

−1
da(x) > 0.

Thus (3.13) follows. L

This result improves Theorem 2.4 in [6] and has many applications.

Corollary 3.1. Let da be a measure supported in [−1, 1] and
2 [m<.. Then there exists a number d :=d(da), 0 < d < 2 (in case
|Z(aŒ)| < 2 every d satisfying |Z(aŒ)| < d < 2 is suitable), such that for n \ 1

0 <
2−d
24
s(da, d) [

cn−1(dan)
cn(dan)

[ 1.(3.14)

Moreover, we have

c1(da, m) |Pn(da, m, x)| [ Sn(da, m, x) [ c2(da, m) |Pn(da, m, x)|(3.15)

and

c1(da, m) [ C
n

k=1

1
|P −n(da, m, xkn)|

[ c2(da, m).(3.16)

Proof. By Hölder inequality and the Gaussian quadrature formulas

C
n

k=1
lkn(dan) |Pn−1(dan, xkn)|(3.17)

[ 5 C
n

k=1
lkn(dan)6

1/2 5 C
n

k=1
lkn(dan) |Pn−1(dan, xkn)|26

1/2

=5F1
−1
dan(x)6

1/2
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=5F1
−1
|Pn(da, m, x)|m−2 da(x)6

1/2

[ 35F1
−1
da(x)6

2/m 5F 1
−1
|Pn(da, m, x)|m da(x)6

(m−2)/m41/2

=5F1
−1
da(x)6

1/m

,

which, together with (3.13), yields

cn−1(dan)
cn(dan)

\
2−d
24
s(da, d) > 0.

The last inequality of (3.14) follows from (3.4).
Inequality (3.15) follows from (3.3), (3.13), (3.17), and (3.14).
Comparing the leading coefficients of (3.15) gives (3.16). L

Theorem 3.2. Let da be a measure supported in [−1, 1] and m ¥ N2.
Then

c(da) [
1

(m−2)!
C
n

k=1

1
lk, m−2, n, m(da) P

−

n(da, m, xkn)
m [ 1(3.18)

and

c(da) [
1

(m−2)!
C
n

k=1

1
lk, m−2, n, m(da) P

−

n(da, m, xkn)
m (1−x2kn)

[ 2.(3.19)

Proof. Comparing the leading coefficients in both the sides of (3.10) and
using (3.14) gives (3.18).

To prove (3.19) we use (3.5) and (3.6) to obtain

C
n

k=1

lkn(dan) Pn−1(dan, xkn)2

1−x2kn

=
cn(dan)2

(m−2)! cn−1(dan)2
C
n

k=1

1
lk, m−2, n, m(da) P

−

n(da, m, xkn)
m (1−x2kn)

,

that is,

1
(m−2)!

C
n

k=1

1
lk, m−2, n, m(da) P

−

n(da, m, xkn)
m (1−x2kn)

(3.20)

=
cn−1(dan)2

cn(dan)2
C
n

k=1

lkn(dan) Pn−1(dan, xkn)2

1−x2kn
.
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According to an inequality given by Freud in [1, Formula (24)]

cn−1(dan)2

cn(dan)2
C
n

k=1

lkn(dan) Pn−1(dan, xkn)2

1−x2kn
[ 2(3.21)

we obtain the right inequality of (3.19). By (3.18) we get

1
(m−2)!

C
n

k=1

1
lk, m−2, n, m(da) P

−

n(da, m, xkn)
m (1−x2kn)

\
1

(m−2)!
C
n

k=1

1
lk, m−2, n, m(da) P

−

n(da, m, xkn)
m \ c(da). L

As an immediate consequence of Theorem 3.2 we state

Corollary 3.2. Let da be a measure supported in [−1, 1] and m ¥ N2.
Then

c(da) [
1

(m−2)!
C
n

k=1

>1−1 [(x−xkn) akn(da, m, x)]m da(x)
lk, m−2, n, m(da)(1−x

2
kn)

[ 2.(3.22)

Proof. Multiplying (3.19) by the number >1−1 Pn(da, m, x)m da(x)=1 we
obtain

c(da) [
1

(m−2)!
C
n

k=1

>1−1 Pn(da, m, x)m da(x)
lk, m−2, n, m(da) P

−

n(da, m, xkn)
m (1−x2kn)

[ 2,

which is equivalent to (3.22) if we notice that

Pn(da, m, x)
P −n(da, m, xkn)

=(x−xkn) akn(da, m, x). L

Theorem 3.3. Let da be a measure supported in [−1, 1] and m ¥ N2.
Then

ln(dan, x) Pn(da, m, x)2 [ c(da, m)(3.23)

and

lmn/2(da, x) Pn(da, m, x)m [ c1(da, m).(3.24)
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Proof. By (3.15) and (2.4)

Pn(da, m, x)2 [ cSn(da, m, x)2 [ c 5 C
n

k=1
|akn(da, m, x)|6

2

[ c 5 C
n

k=1
lkn(dan)6 5 C

n

k=1

akn(da, m, x)2

lkn(dan)
6

[ cln(dan, x)−1,

which is equivalent to (3.23). Further, (3.24) follows from (3.23) and
(3.12). L

Theorem 3.4. Let da and db be measures supported in [−1, 1],
2 [m<., and 0 < p <.. Then for D ¥M and d < |D|

F
D

|Pn(da, m, x)|p db(x) \
(|D|−d)p s(db, D, d) >D db(x)
(24)p [>1−1 da(x)]p/m

, n=0, 1, ... .

(3.25)

Proof. using (3.3), (3.14), and (3.17) we obtain

F
D

|Pn(da, m, x)|p db(x) \ 5F
1

−1
da(x)6

−p/m

F
D

|Sn(da, m, x)|p db(x).

Applying Lemma B with en — |D|−d we can choose In so that |In | [
en=|D|−d and

F
D

|Sn(da, m, x)|p db(x) \
(|D|−d)p

(24)p
F
D0In
db(x)

\
(|D|−d)p

(24)p
s(db, D, d) F

D

db(x).

Hence (3.25) follows. L

Theorem 3.5. Let da and db be measures supported in [−1, 1] and
2 [m<.. If D ¥M satisfies |D0Z(bŒ)| > 0, i.e.,

F
D

bŒ(x) dx > 0,
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then for 0 < p <.

lim inf
nQ.

F
D

|Pn(da, m, x)|p db(x) > 0.(3.26)

Moreover, if b is absolutely continuous on D then the converse is true.
In particular,

lim inf
nQ.

F
D

|Pn(da, m, x)|p dx > 0.(3.27)

if and only if |D| > 0.

Proof. The inequality (3.26) follows by Lemma A from (3.25). The other
conclusions of the theorem are immediate consequences of the first one. L

As direct consequences of this result by the same arguments as that of
[4, Corollary 9 and Theorem 8] we state the following corollaries, omitting
the details.

Corollary 3.3. Let da be a measure supported in [−1, 1], 2 [m<.,
and 0 < p <.. Then for any D ¥M

F
D

|Pn(da, m, x)|p dx \
|D|p+1

2(48)p [>1−1 da(x)]p/m
, n=0, 1, ... .(3.28)

Corollary 3.4. Let da be a measure supported in [−1, 1] and
2 [m<.. Then for any sequence of positive numbers E={en} there exist
sets

In :=In(E, da)=0
n

k=1
(xkn−hkn, xkn+h

−

kn) 3 [−1, 1]

with hk, h
−

k > 0 such that |In | [ en and

|Pn(da, m, x)| \
en

24[>1−1 da(x)]1/m
,(3.29)

holds for all x ¥ [−1, 1]0In and n=1, 2, ... .

4. APPLICATIONS

As applications of the previous results we discuss Lp convergence of the
two operators
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Fn(da, m, f, x)=ln(dan, x) C
n

k=1
f(xkn)

lkn(dan, x)2

lkn(dan)
(4.1)

and

Gn(da, m, f, x)=ln(dan, x) F
1

−1
f(t) Kn(dan, x, t)2 dan(t),(4.2)

where

Kn(dan, x, t)=
cn−1(dan)
cn(dan)

·
Pn−1(dan, t) Pn(dan, x)−Pn−1(dan, x) Pn(dan, t)

x−t
.

(4.3)

The special cases when m=2 are introduced by Nevai in [3, pp. 58, 74]. By
the same arguments as that of [3, Properties 6.1.1, p. 58, and Properties
6.2.1, p. 74] we state the following

Lemma 4.1. Let da be a measure supported in [−1, 1] and 2 [m<..

(a) If f(x) — 1 then Fn(da, m, f, x) — 1.
(b) If f(x)\ 0 for x ¥ [−1, 1] then Fn(da, m, f, x)\ 0 for x ¥ [−1, 1].
(c) Fn(da, m, f, xkn)=f(xkn) for k=1, 2, ..., n.
(d) F −n(da, m, f, xkn)=0 for k=1, 2, ..., n.
(e) Fn(da, m, f) is a rational function of degree (2n−2, 2n−2), only

the numerator depends on f.
(f) If f(x) — 1 then Gn(da, m, f, x) — 1.
(g) If f(x)\ 0 for x ¥ [−1, 1] then Gn(da, m, f, x)\ 0 for x ¥ [−1, 1].
(h) Gn(da, m, f) is a rational function of degree (2n−2, 2n−2), only

the numerator depends on f.

We accept the notations a(1+0)=a(1) and a(−1−0)=a(−1). As
auxiliary lemmas we give several results which are of independent interests.

Lemma 4.2. Let da be a measure supported in [−1, 1] and 0 < m <..
Then a(t) is continuous at t=x if and only if

lim
nQ.
ln(da, m, x)=0.(4.4)
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Proof. (S) We give the proof for x ¥ (−1, 1) only, the proof for
x ¥ {−1, 1) being similar.

Assume that e > 0 is arbitrary. By continuity there exists a positive
number d [ min {e, 1+x, 1−x, 1/2} such that |a(t)−a(x)| [ e/2 whenever
|t−x| [ d. Choose f ¥ C[−1, 1] so that

f(t)=˛
1, t ¥ [x−d/2, x+d/2],

0, t ¥ [−1, x−d] 2 [x+d, 1],

a linear function, t ¥ [x−d, x−d/2],

a linear function, t ¥ [x+d/2, x+d].

By Weierstrass theorem there is a polynomial P ¥ PN−1 for N large enough
so that ||P−f|| [ d. Then by Definition 2.2 we have

lN(da, m, x) [
1

|P(x)|m
F
1

−1
|P(t)|m da(t)

[
1

|f(x)−d|m
F
1

−1
[f(t)+d]m da(t)

=
1

(1−d)m
3Fx−d
−1
dm da(t)+F

1

x+d
dm da(t)

+F
x+d

x−d
[f(t)+d]m da(t)4

[
1

(1−d)m
3dm F 1

−1
da(t)+(1+d)m F

x+d

x−d
da(t)4

=
1

(1−d)m
{dm[a(1)−a(−1)]+(1+d)m [a(x+d)−a(x−d)]}

[ 2m{em[a(1)−a(−1)]+(3/2)m e}.

Since ln(da, m, x) [ lN(da, m, x) for n \N, we obtain

lim
nQ.
ln(da, m, x) [ 2m{em[a(1)−a(−1)]+(3/2)m e}.

Letting eQ 0 we get (4.4).
(R) It suffices to show

ln(da, m, x) \ a(x+0)−a(x−0).(4.5)
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To this end let P ¥ Pn−1 with P(x)=1 satisfy

ln(da, m, x)=F
1

−1
|P(t)|m da(t).

Then for e > 0

ln(da, m, x) \ F
I 5 [x− e, x+e]

|P(t)|m da(t)

\ min
t ¥ I 5 [x− e, x+e]

|P(t)|m F
I 5 [x− e, x+e]

da(t)

\ min
t ¥ I 5 [x− e, x+e]

|P(t)|m [a(x+0)−a(x−0)],

which yields (4.5) by letting eQ 0, because P(x)=1. L

Lemma 4.3. Let da be a measure supported in [−1, 1] and 0 < m <..
Then the following statements are equivalent:

(a) a ¥ C[−1, 1];
(b) limnQ. ln(da, m, x)=0, -x ¥ [−1, 1];
(c) limnQ. ||ln(da, m)||=0;
(d) limnQ. >1−1 ln(da, m, x) a(x)=0.
Proof. (a)Z (b). Apply Lemma 4.2.
(b)Z (c). Apply Dini theorem, since by Definition 2.2 ln(da, m, x) is

monotonically decreasing with respect to n for each fixed x.
(a)Z (d). Trivial.
(d)Z (a). By (4.5) we get that for x ¥ [−1, 1]

F
1

−1
ln(da, m, x) da(x) \ [a(x+0)−a(x−0)]2,(4.6)

which by Statement (d) implies Statement (a). L

Lemma 4.4. Let da be a measure supported in [−1, 1], 2 < m <., and
0 < p <.. If a ¥ C[−1, 1], then

lim
nQ.

F
1

−1
[ln(dan, x) Pn(dan, x)2]p dan(x)=0(4.7)

and

lim
nQ.

F
1

−1
[ln(dan, x) Pn−1(dan, x)2]p dan(x)=0.(4.8)
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Proof. We give the proof of (4.7) only, the proof of (4.8) being similar.
If p \ 1 then by (3.23) and (3.11) with c=c(da, m) defined in (3.23)

F
1

−1
[ln(dan, x) Pn(dan, x)2]p dan(x)

=cp F
1

−1

5ln(dan, x) Pn(dan, x)2
c

6p dan(x)

[ cp F
1

−1

ln(dan, x) Pn(dan, x)2

c
dan(x)

[ cp−1 F
1

−1
ln(da, m, x)2/m Pn(dan, x)2 dan(x)

[ cp−1 ||ln(da, m)||2/m,

which implies (4.7).
If p < 1 then by Hölder inequality

F
1

−1
[ln(dan, x) Pn(dan, x)2]p dan(x)

[ 5F 1
−1
ln(dan, x) Pn(dan, x)2 dan(x)6

p 5F 1
−1
dan(x)6

1−p

[ c 5F 1
−1
ln(dan, x) Pn(dan, x)2 dan(x)6

p

,

which by the previous conclusion again implies (4.7). L

Now we can give our main result in this section as follows.

Theorem 4.1. Let da be a measure supported in [−1, 1], 2 < m <.,
and 0 < p <.. If a ¥ C[−1, 1] and f ¥ C[−1, 1], then

lim
nQ.
||Fn(da, m, f)−f||dan, p=0(4.9)

and

lim
nQ.
||Gn(da, m, f)−f||dan, p=0(4.10)

Proof. First we point out that since Fn(da, m, f) and Gn(da, m, f) are
linear positive operators and Fn(da, m, 1, x) — Gn(da, m, 1, x) — 1, in order
to prove (4.9) and (4.10), it suffices to show

lim
nQ.
||Fn(da, m, fx, x)||dan, p=0(4.11)
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and

lim
nQ.
||Gn(da, m, fx, x)||dan, p=0,(4.12)

respectively, where fx(t)=(x−t)2.
To prove (4.11) by means of (3.2) and the Gaussian quadrature formulas

||Fn(da, m, fx, x)||
p
dan, p

=F
1

−1

5ln(dan, x) C
n

k=1

(x−xkn)2 akn(dan, x)2

lkn(dan)
6p dan(x)

=F
1

−1

5ln(dan, x) Pn(dan, x)2
cn−1(dan)2

cn(dan)2
C
n

k=1
lkn(dan) Pn−1(dan, xkn)26

p

dan(x)

=F
1

−1

5ln(dan, x) Pn(dan, x)2
cn−1(dan)2

cn(dan)2
6p dan(x),

which by (4.7) tends to 0 as nQ..
To prove (4.12) using (4.3) and (3.14) and applying the inequality
(|A|+|B|)p [ 2p(|A|p+|B|p), we obtain

||Gn(da, m, fx, x)||
p
dan, p

=F
1

−1

3ln(dan, x) F
1

−1
(x−t)2 Kn(dan, x, t)2 dan(t)4

p

dan(x)

=F
1

−1

3ln(dan, x) F
1

−1

cn−1(dan)2

cn(dan)2
[Pn−1(dan, t) Pn(dan, x)

−Pn−1(dan, x) Pn(dan, t)]2 dan(t)}p dan(x)

=F
1

−1

3ln(dan, x)
cn−1(dan)2

cn(dan)2
[Pn(dan, x)2+Pn−1(dan, x)2]4

p

dan(x),

[ 2p F
1

−1
{[ln(dan, x) Pn(dan, x)2]p+[ln(dan, x) Pn−1(dan, x)2]p} dan(x),

which by (4.7) and (4.8) again tends to 0 as nQ.. L
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